If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80=0.81t^2
We move all terms to the left:
80-(0.81t^2)=0
We get rid of parentheses
-0.81t^2+80=0
a = -0.81; b = 0; c = +80;
Δ = b2-4ac
Δ = 02-4·(-0.81)·80
Δ = 259.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{259.2}}{2*-0.81}=\frac{0-\sqrt{259.2}}{-1.62} =-\frac{\sqrt{}}{-1.62} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{259.2}}{2*-0.81}=\frac{0+\sqrt{259.2}}{-1.62} =\frac{\sqrt{}}{-1.62} $
| 3n-14=40 | | 16x-20=26x-4x | | 7-7a+12=-8a+15 | | 8g+10=25+3g | | 2/7.n=4 | | 5/6.n=10 | | 8+x=17−2x | | -5•x=45.5 | | J+(j+56)=180 | | 3/5.n=6 | | 1/3.n=10 | | 16x-4=2x+16 | | v-15=- | | 4x-13=3x+6 | | 4x+2(2x-3)=6(6x+2)-2 | | 1/5.g=2 | | 2x+50=30-5x | | 3/4.f=6 | | (c-20)+(c-10)+c=180 | | 5(n-1/6)=8/3 | | 15+0.05m=45 | | 2/3.k=8 | | 24+10m=6.89 | | 175m-125m+43,875=45,900-175m | | 4x=-x^2-2 | | .20x+.35(70)=41.5 | | b/17=5 | | Y=3x-7=23 | | a^2-26a-27=0 | | .20x+.35(70=41.5 | | 6-6a=72 | | 10(x-4)=8x-26 |